PORIAB

PUHER
A Comprenensive Guderor
Users ond Pogommerss

HAIRY KN ZNN JR

Computer Consuttant
Chairman, Computer Science Department
Praft Institute

COVPUIER SCENCE SHAES

NEW YORK CINCINNATI ATLANTA ~ DALLAS SAN FRANCISCO
| ONDON TORONTO MELBOURNE

@ VAN NOSTRAND REINHOLD COMPANY

Van Nostrand Reinhold Company Regional Offices:
New York Cincinnati Atlanta Dallas San Francisco

Van Nostrand Reinhold Company International Offices:
London Toronto Melbourne

Copyright © 1977 by Litton Educational Publishing, Inc.

Library of Congress Catalog Card Number: 77-2168
ISBN: 0-442-24270-0

All rights reserved. No part of this work covered by the copyright hereon may
be reproduced or used in any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company
450 West 33rd Street, New York. N.Y. 10001

Published simultaneously in Canada by Van Nostrand Reinhold Ltd.

1514 1312111098 76 54321

Library of Congress Cataloging in Publication Data

Katzan, Harry.
The IBM 5100 portable computer.

(Computer science series)

Includes bibliographical references and index.

1. IBM 5100 (Computer) 2. APL (Computer
program language) 3. BASIC (Computer program
language) 1. Title.
QA76.8.119K 37 001.6'4 77-2168
ISBN 0-442-24270-0

190 THE BASIC LANGUAGE

and may be “flowed into,” as in the following case:

10 P9=P9+1
20 PRINT USING FLP,30,P9

30 TITLE PAGE ###
When the 40 IF P9=1 GOTO 60
Subroutine is [50 RETURN When the subroutine is
“flowed into” Y960 —— “transferred into”’

510 GOSUB 10

700 GOSUB 10

When a subroutine is both flowed into and transferred into, a branch should be
made around the RETURN statement in the former case.

7.4 MATRIX OPERATIONS

Matrix (MAT) statements in the BASIC language permit operations that deal
with complete arrays, thereby subordinating the detail normally associated with
programming to the computer. Each matrix statement begins with the prefix
MAT and requires that constituent arrays be declared explicitly or implicitly
beforehand. Matrix arithmetic operations are defined only on numeric arrays;
matrix assignment and input/output statements are additionally defined on
character-string arrays. :

The DIM Statement

The DIM statement is used to explicitly declare an array and thereby assign it a
name and its row and column bounds. The form of the DIM statement is:

DIM array-name (rows[,columns]) [,array-name(rows[,columns])] .

where array-name is the name of the numeric or character-string array being,
declared, and the entries rows and columns are non-zero positive integer corn-
stants specifying the dimensions of the array. The rows entry gives the length of
a one-dimensional array and both the rows and columns entries must be used for
two-dimensional arrays. Each element of a numeric array is initialized to zero
and each element of a character-string array is initialized to 18 blank characters,
The maximum size of an array dimension is 255. The following DIM statement

DIM A(11,23),B(3,4),C(15,1),D(50),E(1,6)

ADVANCED TOPICS IN BASIC PROGRAMMING 191

for example, establishes the following numeric arrays:

A has 11 rows and 23 columns
B has 3 rows and 4 columns

C has I5 rows and 1 column
D has 50 elements

E has 1 row and 6 columns

Similarly, the following DIM statement:
DIM F$(3,4),G$(50) ,H$(100,5)
cstablishes the following character-string arrays:

F$ has 3 rows and 4 columns
G$ has 50 elements
H$ has 100 rows and 5 columns

Numeric and character-string array declarations can be made in the same DIM
statement, which must be placed in the program pror to the first reference to
(he array. Otherwise, there are no restrictions on where a DIM statement must
he placed in a program.

Array Replacement

Al MAT operations result in the replacement of the elements of an array. A few
operations pertain to both numeric and character-string arrays and are referred to
as array operations, and use operands denoted as “array-name.” Operations de-
lined only on numeric arrays are referred to as matrix operations, and use oper-
ands denoted as “matrix-name.” The array replacement operations take the
lollowing form:

MAT array-name [(rows[,columns])]= {(Scalar-exp) }

array-name

where array-name is a previously defined numeric or character-string array and
walar-exp is an expression of the same type. The rows and columns optioris
ieler to redimensioning, covered below.

Scalar Replacement. Replacement of the elements of an array with the value
ol u scalar expression takes the following simplified form:

MAT A = (¢)
—~—

I—)Evaluated first
Scalar value is assigned to each
element of A

192 THE BASIC LANGUAGE

If the dimension of A is A(k), then the scalar replacement statement is equiva
lent to A(i)=e, for i=1,2,... k. If the dimension of A is A (m,n), then the
scalar replacement statement is equivalent to A(i,j)=e, for i=1,2,...,m and
j=1,2,...,n. The following statements demonstrate scalar replacement:

MAT B = (-5.341)

MAT C = (3*A212+6%A2-17.1)
MAT D$ = (‘ABCD")

MAT ES$ = (STR(DS,7,2))

In scalar replacement, the scalar expression must be enclosed in parentheses. Re-
dimensioning may also apply to scalar replacement. Figures 7.16 and 7.17 give
examples of scalar replacement. In several of the figures that follow, the MAT
PRINT statement is used. This statement is introduced later in the chapter.
At this stage, it is sufficient to know that it can be used to print or display a
complete array, without having to explicitly print or display each item of the
array.

Array Replacement. Replacement of the elements of an array with the
elements of another array on an element-by-element basis takes the following
simplified form:

MAT A=B

where the two arrays 4 and B must have the same dimensions, possibly after
redimensioning, if specified. If the dimensions of A and B are A(k) and B(k),
respectively, then the array replacement statement is equivalent to A(i)=B(i), for

0010 DIM AC13),B(2,3)

0020 MAT A=(5.31)

0030 MAT B=CINT(10%*RNLI(123)))
0040 MAT PRINT A;

0050 MAT PRINT R;

RUN

5.31 5.31 5.31 5.31 5.31 9.31 5.31

5.31 5.31 5.31 5.31 5.31 5.31

1 1 1

1 1 1

REALY ' 28092

Figure 7.16 Replacement of the elements of a numeric array with the value of a numberic
scalar expression. Note the required parentheses around the expressions,

ADVANCED TOPICS IN BASIC PROGRAMMING 193

0010 DIM A$(3),B$(2,3)

0020 MAT A$=('TEA FOR TWO')
0030 MAT B$=(STR(A%$(2).%,3))
0040 MAT PRINT A%

0050 MAT PRINT B$

RUN

TEA FOR TWO TEA FOR TWO TEA FOR TWwO

FOR FOR FOR

FOR FOR FOR

READY 28065

ffigure 7.17 Replacement of the elements of a character-string array with the value of a
character-string expression. Note the required parentheses around the scalar expressions.

i=,2,...,k. If the dimensions of A and B are A(m,n) and B (m,n), respec-
tively, then the array replacement statement is equivalent to A(1,j)=B(i,j), for
I=1,2,...,m and j=1,2,...,n. The following statements demonstrate array
replacement:

MAT P=Q
MAT T$=V$

0010 LM XC13),Y(13),U(2,3),V(2,3)
0020 MAT Y=(&PI)

0030 MAT V=(&PI+1)

0040 MAT X=Y

0050 MAT U=V

0060 MAT PRINT X;

0070 MAT PRINT U;

RUN RD=3

3,142 3,142 3.1u2 3,142 3,142 3,142 3,142
3.142 3,142 3.142 3.142 3.142 3.142

. 142 . 142 4,142

4.142 4,142 4. 142

READY 27888

Figure 7.18 Numeric array replacement.

194 THE BASIC LANGUAGE

0010 DIM A$(L), BE(4),CH(2,3),D0%(2,3)
0020 MAT H$=('AUDIT')

0030 MAT D$=C'CONTROL ')

0040 MAT A$=B%

0050 MAT Cé=D%

0060 MAT PRINT A%

0070 MAT PRINT C%

RUN
AUDIT AURIT AUDIT AUDLT
CONTROL CONTROL CONTROL
CONTROL CONTROL CONTROL
READY 27822

Figure 7.19 Character-string array replacement.

Redimensioning may also apply to array replacement. Figures 7.18 and 7.19
give examples of array replacement.

Redimensioning. An array can be redimensioned in any MAT statement that
assigns a value to its elements. Replacement and input statements fall into this
category. Rediminsioning is achieved by following the replaced array with the
new dimensions enclosed in parentheses, as follows:

MAT a(e) = ...

l-———)The value of this expression determines

the number of elements in the
redimensioned array.

or

MAT 8(61,62): -
—_——

|———) The value of these expressions determine

the number of rows and columns,
respectively, in the redimensioned
array.

A dimension of the redimensioned array can be specified as a scalar numeric
expression which is evaluated at the point of reference and truncated to an

ADVANCED TOPICS IN BASIC PROGRAMMING 195

0010 DM ACL0),B(B),C(3,4),D(2,3)
0020 MAT B=(180/&PI)

030 MAT D=(&PI/180)

0040 MAT A(8)=R

50 MAT C(2,3)=n

N040 MAT PRINT A;

0070 MAT PRINT C;

RUN RIO=Y
N7.2958 57.2958 57.2958 57.295 .
57.2958 57.2958 27 30eg 37,2958 57.2998

1. 7453E~2 1.7453E~-2 1.7453E-2

REATIY 278462
Figure 7.20 Redimensioning of a numeric array.

integer. Redimensioning applies to numeric and character-string arrays and is
roverned by the following rules:

1. The total number of elements in the redimensioned array may not exceed
the number of elements in the original array.

D010 DIM E$(10),F$(3),6%(5,4),H$(2,3)
1020 MAT F$=('INVENTORY ')

H030 MAT H$=('CONTROL')

V040 MAT E$(3)=F%

030 MAT G$(2,3)=H$

1060 MAT PRINT Es

370 MAT PRINT G%

HUN

INVENTORY INVENTORY INVENTORY

{JUNTROL CONTROL CONTROL

LUNTROL, CONTROL CONTROL

READY 2744y

Figure 7-21 Redimensioning of a character-string array .

196 THE BASIC LANGUAGE

2. Redimensioning applies to both one-dimensional and two-dimensional

arrays.
3. The number of dimensions in an array can be changed with redimensioning.

The following statements demonstrate redimensioning:

MAT A(3,4)=(&PI)
MAT BS$(15)=(STR(P$ 4,10))

Redimensioning also applies to other MAT statements in the same manner. Fig-
ures 7.20 and 7.21 give examples of redimensioning.

Matrix Arithmetic

Matrix arithmetic statements permit arithmetic operations to be performed on
the elements of a numeric array on an element-by-element basis. Since the oper-
ations are numerical, the arrays are referred to as matrices. Matrix arithmetic
statements have the following form:

matrix-name {i} matrix-name
(arith-exp) *matrix-name

MAT matrix-name [(rows [,columns]] = {

where matrix-name denotes a numeric array. In the matrix addition and sub-
traction operations, all three matrices must have the same dimensions after re-
dimensioning, if specified. Arith-exp is a numeric scalar expression.

Matrix Addition. Matrix addition takes the following simplified form:

MAT C=A+B

and adds matrix B to matrix A on an element-by-<lement basis and replaces
matrix C with the result. If the dimension of A B, and C is (k) then the matrix
addition statement is equivalent to C(i))=A()+B(i), for i=1,2,... k. If the
dimensions of A,B, and C are (m,n), then the matrix addition statement is
equivalent to C(i,j)=A(i,j)+B(i,j), fori=1,2, ... ,mand j=12,... ~.

Matrix Subtraction. Matrix subtraction takes the following simplified form:

MAT C=A-B

and subtracts matrix B from matrix A on an element-by-element basis and
replaces matrix C with the result. If the dimension of A,B, and C is (k), then the
matrix subtraction statement is equivalent to C(i)=A(i)-B(i), for i=1,2, ... k.
If the dimensions of A,B, and C are (m,n), then the matrix subtraction state-
ment is equivalent to C(i,j)=A(i,j)-B(i,j), fori=1,2,... ,mand j=1,2,

!
1

|

ADVANCED TOPICS IN BASIC PROGRAMMING 197

Scalar Multiplication.

|‘ Scalar multiplication takes the following simplified
orm:

MAT C = (¢) =B

where matrices B and C have the same dimensions and e is a numeric scalar ex-
expression evaluated at the point of reference. The statement multiplies matrix
BB by expression € on an element-by-element basis and replaces matrix C with the
iesult. If the dimension of matrices C and B is (k), then the scalar multiplication
talement is equivalent to C(i)=e*B(i), for i=1 »2,. .. k. If the dimensions of C
and B are (m,n), then the scalar multiplication statement is equivalent to C(i,j)=
exB(i,j), fori=1,2, ... m and j=1,2,... n. ’

I:?camples. The following statements demonstrate the use of matrix arith-
metic:

MAT Q=F-R

MAT W(6,24)=(&P1+R12)+D
MAT P=(14.731)*N

MAT D(9, 1)=I+J

l'igure 7.22 gives the computer printout for several examples of matrix arith-
metic.

Significant Characteristic. One significant characteristic of matrix arithmetic

«latements is that the same matrix can appear on both sides of the equals sign, as
lollows: ’

MAT A=A+B

l'hcrgfore, if it were desired to add a constant, such as 5 to every element of a
matrix, then a sequence of statements, such as the following would be used:

DIM A(20,30),B(20,30)

MAT B=(5)
MAT A=A+B

similarly, if it were desired to multiply every element of matrix A4 by 10, one
could write:)

MAT A=(10)*A
logically, a matrix arithmetic operation, such as:

MAT A=A+B

198 THE BASIC LANGUAGE

0010 DIM AC10),B(2,3),€¢2,3),0¢2,3)
0020 MAT A=(3)

0030 MAT €=(&)

0040 MAT D=(2)

0050 MAT A=(2)xA

0060 MAT PRINT FLP.A;
0070 MAT B=C+D

0080 MAT PRINT FLP,B;
0090 MAT B=C-D

0100 MAT PRINT FLP.E;
0110 MAT A(2,3)=(-1)*D
0120 MAT PRINT FLP.,A;

(A) Program

10 10 10 10 10 10 10 10 10 10
8 8 8
8 8 8
4 " "
4 4 U
-2 -2 -2
-2 -2 -2
(B) Input

Figure 7.22 Matrix arithmetic demonstrating matrix addition, matrix subtraction, scalar
multiplication, and redimensioning.

is interpreted as follows, “Add matrix B to matrix A and replace matrix A with
the result.” In reality, the operation is performed on an element-by-element
basis, equivalent to the following nested FOR loop:

FOR I=1 TO M
FOR J=1 TO N
A(LT=A®,J)+B(,J)
NEXT J
NEXT I

where M and NV are the row and column bounds, respectively. Similarly, the

statement
MAT A = (3*X+B)*A

ADVANCED TOPICS IN BASIC PROGRAMMING 199

is equivalent to the following nested FOR loop:

T=3+X+B
FOR I=1 TOM
FOR J=1 TO N
A(LI)=T+A(LJ)
NEXT J
NEXT 1

where again, M and N are the row and column bounds, respectively. The scalar
expression in matrix arithmetic is always evaluated first and its value does not
change during the matrix operation. The following example demonstrates this
point. In the statement:

MAT A=(A(2,3))*A
which is equivalent to the following nested FOR loops:

T=A(2,3)
FOR I=1 TOM
FOR J=1 TO N
A(LY)=T*A(1,J)
NEXT J
NEXT I

the elements of matrix A are each multiplied by the same value, namely, the
initial value of A(2,3), even though the value of A(2,3) in the resulting matrix is
changed part way through the computation. The above concepts also apply to
one-dimensional numeric arrays in an analogous fashion.

Matrix Mathematics

Matrix mathematical operations are permitted on previously declared matrices.
This facility allows an identity matrix to be established and includes facilities for
(he transpose, inverse, and matrix multiplication functions.

Identity Function. The identity function permits an identity matrix to be
assigned to a square matrix and has the following format:

MAT matrix-name[(rows, columns)]=IDN

where matrix-name is a square numeric matrix and rows and columns are arith-
melic expressions evaluated at the point of reference, as explained above, and

200 THE BASIC LANGUAGE

specify redimensioning. The following statements, for example:

DIM A(50),B(3,3)

MAT B=IDN
MAT A(7,7)=IDN

would create the following matrices:

1000000
0100000
0010000 1 00
A={0 001000 B=010
0000100 0 01
0000OCGTI1O
00000O0O01

Transpose. The mathematical transpose B of matrix A is defined as:
B(j,i)=AG,)), fori=1,2,. .. ,mand j=1,2,.. . ,n

where the dimensions of A are (m,n) and the dimensions of B are (n,m). The
fact that the number of rows of B is equal to the number of columns of A and
that the number of columns of B is equal to the number of rows of A is signifi-
cant, and must be true for the matrix transpose statement that has the following
form:

MAT array-name [(rows, columns)] =TRN(array-name)

where array-name is a numeric or character-string array and the (rows, columns)
option specifies redimensioning. Since no arithmetic is required in the transpose
function, the operation applies to both numeric and character-string arrays.
Sample transpose statements are:

MAT Q=TRN(R)

MAT F(4,3)=TRN(H)

MAT B$=TRN(W$)
and the printout of a computer program that uses the transpose is given next
under “matrix multiplication.” The matrix transpose statement:

MAT B=TRN(A)

e —————————

ADVANCED TOPICS IN BASIC PROGRAMMING 201

is equivalent to the following nested FOR loops:

FOR I=1 TOM
FOR J=1 TON
B(J,)=A(1,3)
NEXT J
NEXT I

where the M and N are the row and column bounds, respectively, of matrix A
snd are the column and row bounds, respectively, of matrix B. The same array
cunnot appear on both sides of the equal signs in a matrix transpose statement.

Matrix Multiplication. The multiplication of two matrices A and B is
defined as:

Ch S AGK*BK,)
k=1

fori=1,2,...,mandj=1,2,...,p. The dimensions of the matrices are: A{m,n),
B(n,p), and C(m,p). The number of columns in matrix A must equal the
number of rows in matrix B. For example,

(123>* ;g =(46 52)
456/ \g o) \09 124

I'he matrix multiplication statement has the form:

MAT matrix-name [(rows, columns)] =matrix-name*matrix-name

where matrix-name is a numeric matrix and the (rows, columns) option denotes
icdimensioning. The matrices specified in the matrix multiplication statement
must all be two-dimensional and the same matrix must not appear on both sides
ol the equals sign; however, the same matrix may appear twice to the right of
the equals sign, as follows:

Mat A=AxB
lllegal

MAT B=Ax*A
Legal

'I'he mathematical requirement of conformality of operands also applies to the
matrix multiplication statement. As stated above, in a statement of the form:

MAT A=B#C
the following dimensions must hold:

DIM A(M,N), B(M,P),C(P,N)

202 THE BASIC LANGUAGE

which is summarized as follows:

1. The number of columns in B must equal the number of rows in C.

2. The number of rows in A must equal the number of rows in B.

3. The number of columns in A must equal the number of columns in C.
Moreover, if the above dimensions are true, then the MAT statement of the
form:

MAT A=B*C
is equivalent to the following nested FOR loops:

FORI=1 TOM
FORJ=1 TON
S=0
FORK=1TOP
S=S+B(I,K)*C(K,J)
NEXT K
A(L])=S
NEXTJ
NEXT {
As an example of matrix multiplication, consider the theorem in mathematics

that states:
(AB)T=BTAT

where A and B are matrices and the T denotes transpose. The program in Figure

7.23 gives an example of the theorem.
Matrix Inverse. The inverse of a matrix A is a matrix B that satisfies the fol-

lowing identity:
A*B=B*A=]

where | is the identity matrix. The notion of the inverse of a matrix is easily
1 2
demonstrated. To compute the inverse of the matrix (3 4) , @ matrix of the
b
form (: d) is needed such that:
ab N 1 2)_{10
c d/ \3 4) \0 1
After performing the matrix multiplication symbolically and equating elements
to the identity matrix, the following simultaneous equations are obtained:

at+3b=1 2at+4b=0
¢+3d=0 2ct4d=1

ADVANCED TOPICS IN BASIC PROGRAMMING 203

0010 DIM AC3,2),B(2,3),C(3,3),0(3,3)
0020 DIM EC2,3).F(3,2),6(3,3)

0030 MAT READ AR

0040 MAT C=AxE

0050 MAT D=TRN(C)

0060 PRINT FLP, TRANSPOSE (AxH)®
6070 MAT PRINT FLP,D;

0080 MAT E=TRN(A)

0090 MAT F=TRN(R)

6100 MAT G=FxE

0110 PRINT FLP, TRANSPOSE(B)*TRANSPOSE(A)"
0120 MAT PRINT FLP,G;

0130 DATA 1,2,3,4,2,1

0140 DATA 3.,1.1.2,4,3

TRANSPOSE (A*R)

7 17 8
b4 19 6
7 15)

7 17 8
? 19 6
7 15]

blgure 7.23 An instance of the mathematical theorem (AB)T=BTAT demonstrating matrix
tanspose and matrix multiplication.

The solution to the simultaneous equations is a=-2, b=1, c=1.5, and d=- .5, so

(hat the inverse matrix is (1_5

).* The form of the matrix inverse state-
ment is:

-.5

MAT matrix-name [(rows, columns)] =INV(matrix-name)

where matrix-name is a numeric square** matrix, and the (rows, columns) option
lenotes redimensioning. In the execution of the matrix inverse statement, the

*The reader can verify that (1-2 _1_5) * (; §)= ((1) (1) .

**In a square matrix, the number of rows equals the number of columns.

204 THE BASIC LANGUAGE

inverse is taken of the matrix to the right of the equals sign, which must be non-
singular,* and the inverse is assigned to the matrix to the left of the equals sign.
The matrix inverse is frequently used in the solution of simultaneous linear
equations. For example, consider the system of equations:

x1+x2+2x3=3
x1+2x2+3x3=4
X1~X2-X3=2

X1
7X= X2

3
,and B= | 4|, then the system of equations can be
X3 2

112
IfA=|1 2 3
1-1-1

expressed as:
AX=B

Multiplying each side of the matrix equation by the inverse of 4 (expressed as
A™) and simplifying as follows:

A7 AX=A"'B
IX=A"'B
=A"'B
the solution X is obtained. Figure 7.24 gives a BASIC program that solves the
3
system of equations that has the following solution: X={ 2 |.
-1

User-Oriented Input and Output

User-oriented array input and output facilities closely parallel those given earlier
for single data values. Four statements are involved: READ, INPUT, PRINT,
and PRINT USING. The matrix forms of the statements are prefixed with the
keyword MAT.

The MAT READ Statement. The MAT READ statement is used to read data
values from the internal data set created from DATA statements and assigns
those values to specified arrays. The statement has the following form:

MAT READ array-name[(rows[,oolumns])] [,array-name [(rows[,columns])]] .

*A matrix is singular if its determinant is zero. This is determined with the DET function,
Therefore, a matrix A is non-singular if DET(A)=0. The DET function can be used on
matrices up to SOX 50; and a determinant is considered to be zero if its value is 1E-20 or less.

ADVANCED TOPICS IN BASIC PROGRAMMING 205

V010 OIM AC3,3),B(3.1),X(3,1),0¢3,3)
0020 MAT READ AR

0030 IF DETC(A)=0 GOTO 0090
1040 MAT Q=INV(A)

1030 MAT X=@%*E

0060 MAT PRINT X;

01070 STOP

1380 PRINT 'A IS SINGULAR®
1090 DATA 1,1,2,1,2,3,1,-1,-1
0100 DATA 3,4,2

RUN

3.000000
2.000000

1.000000

REALY 27818

I igure 7.24 Solution to a system of simuitaneous linear equations demonstrating the use of
the matrix inverse.

where array-name is a previously declared numeric or character-string array that
may have one or two dimensions and the (rows, columns} option denotes re-
dimensioning. If redimensioning is not specified, then the dimension of the
ipecified array is taken from its declaration, and the appropriate number of
vulues are read from the internal data set and assigned to the array in a row-wise
order. For example, the statements:

DIM R(3,4)
MAT READ R
DATA -7,3,9,6,5,1,4,2,8,-9.,0,3

would cause the following matrix to be formed in the main storage unit:

-7 3 9 6
R=| 5§ 1 4 2
8 -9 03
und the statements:
DIM K(15)
MAT READ K

DATA -7,3,9,6,5,1,4,2,8,-9,0,3,-6,7,-1
would cause the following one-dimensional array to be constructed:

K=(-739651428-903-67-1)

206 THE BASIC LANGUAGE

The concepts also apply to character-string arrays, as in the following statements:

DIM D$(2,3)

MAT READ D$

DATA ‘PINTO’,'VEGA’,’ARROW’

DATA ‘STARFIRE’,‘SKYHAWK’,'MONZA’

that cause the following two-dimensional character-string array to be con-
structed:

_ [PINTO’ ‘VEGA’ ‘ARROW’)
D§ = ‘STARFIRE’ ‘SKYHAWK’ ‘MONZA’

Figure 7.25 contains several examples of MAT READ statements as well as cor-

responding MAT PRINT statements, covered below.

8010 DIM C$(15,15), H(20),T(5,12),W(1,1),0%(&)
0020 READ I,J.K,M,N
0030 MAT READ C$(I,J) H(K),T(M,N) W, D%
0040 MAT PRINT FLP,C$,H;T;W;D%;
2,3,7,4.,3)
ggzg 2212 %P?NTO'.'VEGA','ARRDU';'STARFIRE'.'SKYHAUK','MDNZA
070 DATA -7.3,9,6,5,1.4
0080 DATA 1,1.2,3,%,8,13,21,34,55,89, 144
0090 DATA -713.4385
0100 DATA 'A', "B, 'C','DI",'E", 6’

PINTO VEGA ARROW
STARFIRE SKYHAWK MONZA
-7 3 9 6 5 1 L]

1 1 2

3 S 8

13 21 34

55 89 14y

~-713.4385

ARCDEG

Figure 7.25 Examples of the use of the MAT READ and MAT PRINT statements.

ADVANCED TOPICS IN BASIC PROGRAMMING 207

The MAT INPUT Statement. The function MAT INPUT statement is identical
(o the MAT READ statement, except that input is requested from the keyboard
Instead of being read from the internal data set. The form of the MAT INPUT
statement is:

MAT INPUT array-name [(rows[,columns])][,array-name [(rows[,oolumns])]] A

where array-name is a previously declared numeric or character-string array,
having either one or two dimensions, and the (rows, columns) option denotes
redimensioning. If redimensioning is not specified, then the dimension of the
specified array is taken from its declaration, and the appropriate number of
values are requested from the keyboard and assigned to the array in a row-wise
order. An example of a valid MAT INPUT statement is:

MAT INPUT Q,R(2,N+5)

When the MAT INPUT statement is executed, the user at the keyboard is
prompted with a question mark. Values are placed into the input line separated
by commas. As each line is filled, it is entered into the computer by pressing the
I'XECUTE key. If the array is not filled, then the question mark is displayed
ngain. This process is continued until all arrays specified in the MAT INPUT
itatement have been assigned values. Moreover, the input is assigned succes-
slvely; after one array is filled, the next value entered is assigned to the next
nrray in the input list. Excess values, after the last array in the list has been
filled, are ignored. All values entered must match the corresponding type of
variable in the input list. Figure 7.26 includes examples of matrix input.

The MAT PRINT Statement. The MAT PRINT statement is used to print or
display a complete array without referring to specific array elements. The
statement has the following form:

MAT PRINT [file-ref,] array-name Hi}array-name]. . [{:}]

where file-ref can be FLP for the printer or the designations FLO through FL9
for tape files O through 9.* Array-name is a previously declared one or two-
dlimensional array that contains either numeric or character-string elements. If
the file reference is omitted, then the arrays are displayed on the display screen.

*If a file is specified in a MAT PRINT statement, the file must be opened before the state-
munt is executed.

208 THE BASIC LANGUAGE

0010 DIM A(H),E$(3),C(2,1)
0020 MAT INPUT A,E$,C .
0025 PRINT FLP,TAE(10), OQUTPUT

0030 MAT PRINT FLP,A;B$.C;

RUN
-7.3.9.6
"ROLT', ‘HAMMER®, 'WRENCH’
3.14,2.72
0020
(A) Program and input
ouTPUT
-7 3 9 &
HOLT HAMMER WRENCH
3,14
2,72

(B) Output
Figure 7.26 Matrix input.

An example of valid MAT PRINT statements are:

MAT PRINT FLP, A;B;C
MAT PRINT W;

Each array is printed or displayed by rows with each row starting on a new line.
The first row is preceded by two blank lines and succeeding rows are separated
from the preceding row by one blank line. If the array reference is followed by
a comma,* the array elements are printed or displayed using full print z9nes. If
the array reference is followed by a semicolon, the array elemepts are printed or
displayed using packed print zones. Values are displayed using the same for-
matting conventions as were given for the PRINT statement. Examples of the
use of the MAT PRINT statement were given in Figure 7.25.

The MAT PRINT USING Statement. The MAT PRINT USING statement is
used to print or display complete arrays using a specified line image. The form
of the line is the same as with the PRINT USING statement. The form of the

*For the last array in an output list, a blank character following the array name is equiva-
lent to a comma.

ADVANCED TOPICS IN BASIC PROGRAMMING 209

MAT PRINT statement is:

MAT PRINT USING [fileref,] statement-number, array-name [{:} [array-name]] A [{:}]

where:

file-ref is FLP or FLO through FL9, as specified above,

statement-number is the statement number of the corresponding line image
statement, and

array-name is a previously declared one or two-dimensional array that con-
tains either numeric or character-string elements.

An example of a valid print using statement is:

100 PRINT USING 101,A,B
101 : #HEHE# #AEFFH]

liach array reference is edited and then printed or displayed in row order ac-
cording to the specified line image. As with the MAT PRINT statement, the first
row of each array begins on a new line, preceded by two blank lines. Each
succeeding row begins on a new line and is separated from the preceding row by
one blank line. The beginning of each row is printed or displayed according to
the start of the line image. If the line image contains more format specifications
(han the number of elements in the row, then the excess format specifications
are ignored. If the number of format specifications is less than the number of
clements in the row, then the spacing is controlled by the delimiter following the
array reference, as follows:

1. If the delimiter is a comma or a blank and the end of the line image is
reached, the current line is printed or displayed and output continues on a
line with the start of the line image.

2. If the delimiter is a semicolon and the end of the line image is reached, the
output continues on the same line with the start of the line image.

I'igure 7.27 gives several examples of the use of the MAT PRINT USING state-
ment. The last row of the last array in a MAT PRINT USING statement, as
demonstrated in Figure 7.28, requires special attention. If the trailing delimiter
is a comma or a blank character, the line containing the last row is printed or
displayed so that the next output will begin on a new line. If the trailing de-
limiter is a semicolon, then the current line is not printed or displayed so that
the next output will be on the same line. The concept is analogous to that of
ending a simple PRINT statement with a semicolon.

210 THE BASIC LANGUAGE

0010 DIM ACS),B(4,3),C(2,6),D%()

0020 MAT READ A,R,C.D%

0030 MAT PRINT USING FLP,004%0.A

0040 : HHH, HH HitH# . HE

0050 MAT PRINT USING FLP,0060.E.C

00460 : HHH HiuHi, He LHEEEL #.He1111]
0070 MAT PRINT USING FLP,0060.B;C;

0086 MAT PRINT USING FLP,0090.D%

0090 : HHHHH HiHHH HUHHH HUHBH HUHUH
0100 DATA 1.23,2.3%,3.45,%.56,5,67

0110 DaTA 1,2,3.4,5,6,7,8,9,10,11,12

0120 DATA 10,20,30,4%0,50,60,70,80,90,100,110,120
0130 DATA 'ABLE', 'BAKER', 'CHARLY', 'DAWEG’

1.23 2.34%
345 4.56
S.67
1 2,00 . 3000E+01
4 5.00 .4000E+01
7 8.00 .9000E+01
10 11.00 .1200E+02
10 20,00 .3000E+02 4.00E+01
50 60,00
70 80.00 ,9000E+02 1.00E+02
110 120.00
1 2.00 ,3000E+01
4 5.00 .6000E+01
v 8.00 ,2000E+01
10 11.00 L1200E+02
10 20.00 ,3000E+02 4. 00E+01 S50 40,00
70 80.00 .P000E+02 1.00E+02 110 120.00

ABLE BAKER CHARL LAWG
Figure 7.27 Examples of the use of the MAT PRINT USING statement.

File-Oriented Input and Output

The facilities for file-oriented input and output of complete arrays closely re-
sembles those given earlier for single data values. Two statements are involved:
GET and PUT. The matrix forms of the statements are prefixed with the key-

ADVANCED TOPICS IN BASIC PROGRAMMING 211

0010 DIM AC2,3)

1020 MAT READ A

0030 MAT PRINT USING 0040.4;
0040 : HH HE HE

0050 PRINT 'ALL DONE®

10460 DATA 1,2,3,4,5,6

RUN

1 2 3

4 S 6ALL DONE

REALY 28172

Figure 7.28 If the MAT PRINT USING a statement contains a trailing semicolon, then the
next output is printed or displayed on the last line of array output.

word MAT. All files referenced with the MAT GET and MAT PUT statements
require the use of OPEN and CLOSE statements, as previously introduced, and
input and output processing is the same—except for the fact that entire arrays
ure being transmitted instead of single values.

The MAT GET Statement. The MAT GET statement is used to read data
values from the specified file and assign them in row order to the specified
nrray. The statement has the following form:

MAT GET Iile-ref,array-name [(mws[,columns])] [,array-name [(rows[,columns])]] .. .[EOF statement-number)

where file-ref, array-name, and (rows,columns) have the same definitions as
given previously. The FOF statement-number option specifies the statement
number to which program control should be directed if the values in the data
lile are exhausted before the input list is satisfied. An example of a valid MAT
GET statement is:

MAT GET FL2,H,K(15,25)

When the MAT GET statement is executed, data values are read from the speci-
fied file until the declared or redimensioned size of the specified array is satisfied.
I'igure 7.29 demonstrates the case wherein an array is written to a file as single
ata values and read back as a complete array. The fact that a data file exists as
o list of discrete data values is clearly evident with the input and output of com-
plete arrays.

The MAT PUT Statement. The MAT PUT statement is used to write a com-
plete array to a specified data file. The elements of the array are written in row
order and exist in the data file as a list of discrete values. The statement has the

212 THE BASIC LANGUAGE

0010 DIM A(3. W)

0020 MAT READL A

0030 OPEN FLB, "E8S80".003,0UT
0040 FOR I=1 TO 3

0030 FOR J=1 TO 4

0060 PUT FLB,A(I,J?

0070 NEXT J

0080 NEXT I

0090 CLOSE FL8

0100 MAT A=(0)

0110 OPEN FLB, 'E8B0'.003,IN
0120 MAT GET FL8.A

0130 MAT PRINT A;

0140 CLOSE FLB

0150 DATA 1.2,3.4,3.6,7,8,9,10,11,12

RUN
1 2 3 4
S 6 7 8
9 10 11 12
READY 27317

Figure 7.29 Example of the use of the MAT GET statement in which an array is written to
a file as single data values and read back as an array.

following form:

MAT PUT file-ref, array-name [,array-name] . . .

where file-ref and array-name have the same definitions as given previously. An
example of a valid MAT PUT statement is:

MAT PUT F14,U,V,W
Data files are written so that the first value written with a MAT PUT statement is

the first value read by a subsequent MAT PUT (or GET) statement. This case is
demonstrated in Figure 7.30 that gives the combined use of MAT PUT and MAT

GET statements.

7.5 PROGRAM CHAINING AND COMMON STORAGE

Program chaining is a computer facility that permits one program to call another
program, and common storage is a special area in the main storage unit that is

ADVANCED TOPICS IN BASIC PROGRAMMING 213

0010 DIM V(5),M(y,y)
0020 MAT v=(1)
0030 MAT M=(25)
0040 PRINT FLP, 'VECTOR - MAT '
ggzﬂ MAT PRINT FLP,V;M; Rix
0 OPEN FLS, 'EB0',002,0UT
0070 MAT PUT FLS,V, M
0080 CLOSE FLS
0090 OPEN FL5, 'ES0,002, 1IN
gigﬂ MAT GET FLS,M,V
0 PRINT FLP, 'MATRIX ~ VEC !
0120 MAT PRINT FLP,M;Vv; TOR
0130 CLOSE FLS

VECTOR - MATRIX

1 1 1 1 i
2/ 25 25 25
252 25 325
25 25 25 25
25 25 25 25

MATRIX ~ VECTOR

1 25 25 25
25 23 23 25
25 25 25 25
25 25 25 25 25

£

wlrg::t;en7;30 clfxamy':ﬂe of the use of MAT PUT and MAT GET statements. The first value
0 a data file with the MAT PUT statement is the first value read in a b

MAT GET (or GET) statement. hseauent

uffef:tlvely used to exchange data betweeen programs that are executed su

cessively. The need for program chaining and common storage facilities is 4
direct consequence of the fact that the effective use of the main storage unit s
dependent upon the size of both programs and data. s s

